RSS订阅

水生动物

您现在的位置:首页/研究进展/水生动物

Nature子刊:浙江大学柯越海课题组利用斑马鱼气囊化鱼鳔建立新型肺泡炎性损伤模型

2016年11月16日 浏览量: 评论(0) 来源:生物帮 作者:生物帮 责任编辑:yjcadmin
摘要:2016年11月10日,国际学术权威刊物自然出版集团旗下子刊《Cell Death & Disease》在线发表了浙江大学基础医学院柯越海课题组题为"Manipulating the air-filled zebrafish swim bladder as a neutrophilic inflammation model for acute lung injury"的研究论文。

2016年11月10日,国际学术权威刊物自然出版集团旗下子刊《Cell Death & Disease》在线发表了浙江大学基础医学院柯越海课题组题为"Manipulating the air-filled zebrafish swim bladder as a neutrophilic inflammation model for acute lung injury"的研究论文。研究首次报道基于气囊化的斑马鱼鱼鳔,建立新型快速肺泡炎性损伤研究模型,该研究从方法学角度分别模拟空气细小颗粒(PM2.5)、细菌(脂多糖)以及病毒(Poly-IC)感染,建立斑马鱼急性损伤模型,通过比较生物学研究,探讨了炎性驱动的中性粒细胞迁移与浸润的病理损伤效应与作用途径。直博生张越飞为论文第一作者,柯越海和张雪老师为论文通讯作者。

当前大气污染引起公众对于呼吸健康普遍担忧,尤其细小颗粒物可侵袭肺泡进而可能累及循环系统。肺泡位于呼吸道终末端,难以建立一种在体、高效便捷的研究手段。斑马鱼透明、可实时成像,适用于通量筛选,是发育、心血管、肿瘤及药物研发领域较广泛运用的模式生物,但目前呼吸病研究尚未有采用斑马鱼作为模式生物。鱼鳔是气囊化组织,可分泌表面活性剂,也是鱼类辅助呼吸器官;生物系统进化提示鱼鳔与哺乳动物肺泡均呈现气囊化解剖特征,在组织形态发生及转录组水平存在高度同源性。为探讨应用斑马鱼鱼鳔来作为肺损伤模型可行性,课题组尝试性将纳米硅、脂多糖以及Poly-IC分别注射到斑马鱼鱼鳔,发现均可引起不同程度的中性粒细胞炎性浸润及鱼膘病理结构损伤。利用鱼鳔模型,通过抑制剂文库初步筛选,进一步验证干扰磷酸化信号分子可显著缓解脂多糖诱导鱼鳔中性粒细胞浸润及炎性损伤。该研究还深入比较斑马鱼与小鼠急性肺损伤模型病理特征,认为斑马鱼气囊化鱼鳔可作为一种在体、快速、便捷肺泡损伤模型,在环境污染与呼吸健康研究领域具有良好运用前景。

相关阅读:Cell Res:浙大柯越海课题组揭示锚点蛋白GAB1调控过敏性哮喘新机制

原文链接:

Manipulating the air-filled zebrafish swim bladder as a neutrophilic inflammation model for acute lung injury

原文摘要:

Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS), are life-threatening diseases that are associated with high mortality rates due to treatment limitations. Neutrophils play key roles in the pathogenesis of ALI/ARDS by promoting the inflammation and injury of the alveolar microenvironment. To date, in vivo functional approaches have been limited by the inaccessibility to the alveolar sacs, which are located at the anatomical terminal of the respiratory duct in mammals. We are the first to characterize the swim bladder of the zebrafish larva, which is similar to the mammalian lung, as a real-time in vivo model for examining pulmonary neutrophil infiltration during ALI. We observed that the delivery of exogenous materials, including lipopolysaccharide (LPS), Poly IC and silica nanoparticles, by microinjection triggered significant time- and dose-dependent neutrophil recruitment into the swim bladder. Neutrophils infiltrated the LPS-injected swim bladder through the blood capillaries around the pneumatic duct or a site near the pronephric duct. An increase in the post-LPS inflammatory cytokine mRNA levels coincided with the in vivo neutrophil aggregation in the swim bladder. Microscopic examinations of the LPS-injected swim bladders further revealed in situinjuries, including epithelial distortion, endoplasmic reticulum swelling and mitochondrial injuries. Inhibitor screening assays with this model showed a reduction in neutrophil migration into the LPS-injected swim bladder in response to Shp2 inhibition. Moreover, the pharmacological suppression and targeted disruption of Shp2 in myeloid cells alleviated pulmonary inflammation in the LPS-induced ALI mouse model. Additionally, we used this model to assess pneumonia-induced neutrophil recruitment by microinjecting bronchoalveolar lavage fluid from patients into swim bladders; this injection enhanced neutrophil aggregation relative to the control. In conclusion, our findings highlight the swim bladder as a promising and powerful model for mechanistic and drug screening studies of alveolar injuries.

对不起,暂无资料。
点击这里给我发消息 点击这里给我发消息 点击这里给我发消息
Baidu
map